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Abstract. Squeezing properties of a two-mode radiation produced by a process of driven degenerate para-
metric down conversion, when the cavity is coupled to two independent squeezed vacuum reservoirs em-
ploying the linearization procedure, are analyzed. The two-mode cavity and output radiations exhibit
considerable squeezing even when the oscillator is coupled to a vacuum reservoir. One of the effects of
coupling the cavity to the squeezed vacuum reservoirs is to increase the degree of squeezing exponentially.
For the output radiation the correlation of the quadrature operators evaluated at different times also con-
tributes to the squeezing, which is the reason for quenching of the overall noise in one of the quadrature
components of the fundamental mode.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 42.65.Yj Optical parametric oscillators and amplifiers

1 Introduction

Optical degenerate parametric down conversion, in which
a pump photon of frequency 2ω is down converted by a
nonlinear crystal into a pair of signal photons each of fre-
quency ω, is one of the most interesting and well studied
phenomena in the nonlinear quantum optics [1–15]. As it
has been shown earlier, due to the inherent two-photon
nature of the interaction, the parametric oscillator can be
taken as a conventional source of a squeezed light [1]. The
maximum achievable squeezing for the single-mode cavity
radiation coupled to an ordinary vacuum is found to be
50% by many authors following various approaches [1–4].
Most recently, employing the state of the art squeezed
state generation based on periodically poled nonlinear
crystal, Takeno et al. [5] obtained a single-mode squeezing
larger than 85% for output radiation in a parametric down
conversion process. The limitation in the degree of squeez-
ing is mainly attributed to the transmission through the
mirror and amplification of the noise in the cavity, since
the vacuum field has no definite phase. However, if the
ordinary vacuum reservoir is replaced by a squeezed vac-
uum, the noise fluctuations entering the cavity would be
biased and hence the squeezing of the cavity radiation
could be enhanced provided that the reservoir is squeezed
in the right quadrature. In this respect, the squeezing of
the cavity radiation of a degenerate parametric oscilla-
tor coupled to a single-mode squeezed vacuum reservoir
is found to increase exponentially with the squeezed in-
put [2].
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It is not difficult to envision that when a nonlin-
ear crystal is shined with an external radiation of fre-
quency 2ω, only some part of this radiation would be down
converted into a pair of photons with frequency ω. That
is, the cavity contains a two-mode radiation that com-
prises the down converted and unchanged radiation which
I designated as the fundamental and second-harmonic
modes [6,7], respectively. It is a common knowledge that
analysis of the squeezing properties and photon statistics
of the fundamental mode of the degenerate parametric os-
cillator coupled to a squeezed vacuum reservoir has been
exhaustively made over the years by many authors [1–3]
upon treating the second-harmonic mode classically. Al-
though this consideration appears to be mathematically
friendly, it denies the very existence of the two-mode light
in the cavity. Contrary to this well established claim, in
recent years different authors showed that the second-
harmonic mode also exhibits squeezing following various
approaches [6,8,9]. Due to the coherence in the driving
mechanism, it is reasonable to expect that at microscopic
level nonclassical correlations between the fundamental
and second-harmonic modes lead to a two-mode squeez-
ing that arises due to the down conversion of a single-
high frequency photon into a pair of correlated lower fre-
quency photons. In connection to this, previous studies
have shown the existence of a strong correlation between
the fundamental and second-harmonic modes in the oppo-
site up parametric conversion process [16]. Moreover, the
inclusion of the quantum properties of the pump mode
results modification in the quantum features of the cav-
ity radiation which leads, for instance, to tripartite en-
tanglement in a nondegenerate parametric oscillator [17].
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Basically, these are some of the motivations for study-
ing the nonclassical properties of the light in a degener-
ate parametric down conversion when the pump mode is
treated quantum mechanically.

It is, therefore, compelling to expect that a coher-
ently driven degenerate parametric down conversion phe-
nomenon can also be a source of a two-mode squeezed light
characterized by a strong correlation between the funda-
mental and second-harmonic modes. It is believed that
the squeezing can exist in each mode separately as well
as in the superimposed state formed by the two modes.
On the basis of the strong correlation and superposition
of the two modes, the two-mode squeezed light, in gen-
eral, can be used in demonstrating a variety of entangled
states which currently found to have a key role in the
quantum information and precession measurements in as-
sociation with the preparation of Einstein-Podolsky-Rosen
type entanglement [18], quantum teleportation of contin-
uous variables [19], and testing of nonlocality [20] among
others. With interest, nowadays, shifting from the produc-
tion of squeezing to its application and hence attention
is moving away from demonstration experiments towards
producing robust, well understood sources of squeezing, it
was believed that parametric amplification has enjoyed a
great success as a source of continuous wave and bright
squeezed light [21]. Therefore, as far as I can see, the co-
herently driven degenerate parametric down conversion
process can also be one of the possible mechanisms for
producing two-mode bright squeezed light. Hence, it goes
without saying that a thorough theoretical investigation
of the quantum nature of the two-mode radiation in the
cavity of a degenerate parametric oscillator is required.

In line with this, the main task of this contribution
is devoted to the analysis of the squeezing properties of
the two-mode radiation in a cavity of a driven degenerate
parametric oscillator coupled to two independent squeezed
vacuum reservoirs. Owing to the fact that the differen-
tial equations following from a trilinear Hamiltonian are
difficult to solve analytically, a linearization procedure in
which the quantum properties of the system in time are
taken to vary slightly around the steady state values is em-
ployed. A semiclassical approximation whereby the two
modes are assumed to be uncorrelated at steady state
is also considered. As recently discussed by Chaturvedi
et al. [8], the semiclassical theory is found to work sur-
prisingly well in the threshold region. In view of this fact,
the squeezing properties of the two-mode radiation near
threshold is studied by solving the linearized differential
equations in the semiclassical limit following the procedure
described in reference [22]. In particular, the quadrature
variances for cavity mode and the squeezing spectrum for
the output radiation are calculated. The obtained results
are compared with the corresponding values of the funda-
mental mode.

2 Quantum Langevin equations

Interaction of an external coherent radiation with a non-
linear crystal responsible for the degenerate parametric

oscillation placed in a resonant cavity can be described
in the rotating-wave approximation and in the interaction
picture by the Hamiltonian of the form [8,10]

ĤI =
iλ

2

[
â†2 b̂ − â2b̂†

]
+ iε

[
b̂† − b̂

]
, (1)

where â and b̂ are the time-independent annihilation op-
erators for the fundamental (subharmonic) and pump
(second-harmonic) modes, λ is the measure of the cou-
pling of a nonlinear crystal with the cavity radiation,
and ε is proportional to the amplitude of the coherent
input. In this contribution, λ and ε are chosen to be real-
positive constants. Now in view of the fact that â and b̂
are mutually commuting operators, the pertinent quan-
tum Langevin equations are found to be

dâ

dt
= λâ†b̂ − κ

2
â + F̂a(t), (2)

db̂

dt
= −λ

2
â2 − κ

2
b̂ + ε + F̂b(t), (3)

where κ is a cavity damping constant taken to be the same
for both modes and F̂i(t), with i = a, b, are the Langevin
noise operators satisfying, for two independent squeezed
vacuum reservoirs, the correlation functions [23]

〈F̂i(t)〉 = 0, (4)

〈F̂ †
i (t)F̂ †

i (t′)〉 = 〈F̂i(t)F̂i(t′)〉 = κMiδ(t − t′), (5)

〈F̂ †
i (t)F̂i(t′)〉 = κNiδ(t − t′), (6)

〈F̂i(t)F̂
†
i (t′)〉 = κ(Ni + 1)δ(t − t′), (7)

〈F̂ †
j (t)F̂i(t′)〉i�=j = 〈F̂j(t)F̂i(t′)〉i�=j = 0, (8)

where Ni = sinh2(ri) and Mi = sinh(ri) cosh(ri), in which
ri is the squeeze parameter of the respective modes.

It can be noted that equations (2) and (3) are nonlinear
coupled differential equations for which it is difficult to
obtain the exact solutions analytically. This often leads to
the application of some sort of approximation scheme. In
this regard, a linearization procedure, in which

â(t) = α + Â(t), (9)

b̂(t) = β + B̂(t), (10)

is employed where Â(t) and B̂(t) are very small varia-
tions about the expectation values at steady state and
α = 〈â(t)〉ss and β = 〈b̂(t)〉ss. This approximation re-
mains valid as long as the quantum fluctuations about
the expectation values are much smaller than the classical
mean values, namely, the quantum noise during the inter-
action is quite small. In addition, upon taking the statis-
tical average of equations (2) and (3) and then applying
the semiclassical approximation in which at steady state
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the modes are assumed to be uncorrelated, 〈â†(t)b̂(t)〉ss =
〈â†(t)〉ss〈b̂(t)〉ss and 〈â2(t)〉ss = 〈â(t)〉2ss, one obtains

λα∗β − κ

2
α = 0, (11)

λα2 + κβ = 2ε. (12)

Semiclassical assumption, on the other hand, is found to
work for weak nonlinearity or coupling between the exter-
nal radiation and nonlinear crystal, that is, the mean pho-
ton number at threshold is taken to be very large. More-
over, with the aid of equations (2), (3), (9), (10), (11),
and the fact that Â and B̂ are small perturbations, it is
possible to see that

dÂ(t)
dt

= ε∗1B̂(t) + ε2Â
†(t) − κ

2
Â(t) + F̂a(t), (13)

dB̂(t)
dt

= −ε1Â(t) − κ

2
B̂(t) + F̂b(t), (14)

where ε∗1 = λα∗ and ε2 = λβ. On the basis of the deriva-
tion presented in Appendix A, one can readily verify that

ε1 = ±
√

2λε − κε2 (15)

and ε2 = κ/2 for ε1 �= 0. As can readily be seen from
equation (15) the amplitude of the fundamental mode can
assume two values (positive and negative), which can be
interpreted as if the system is in a transient superimposed
state of these amplitudes prior to detection.

Upon introducing,

Â± = Â† ± Â, (16)

B̂± = B̂† ± B̂, (17)

Ê±(t) = F̂ †
a (t) ± F̂a(t), (18)

F̂±(t) = F̂ †
b (t) ± F̂b(t). (19)

One can find following the procedure described in refer-
ence [22] that the solution of equations (13) and (14) to be

Â±(t + τ) = −
(

1 ± 1
λ

) [
ε1b±(τ) + ε2c±(τ)

]

+ b±(τ)Â±(t) + c±(τ)B̂±(t)

+ ĝ±(t + τ) + f̂±(t + τ), (20)

B̂±(t + τ) =
(

1 ± 1
λ

) [
ε1c±(τ) − ε2d±(τ)

]

− c±(τ)Â±(t) + d±(τ)B̂±(t)

+ k̂±(t + τ) + ĥ±(t + τ), (21)

where

b±(τ) =
1
2
[
(1 ± p)e−η±τ + (1 ∓ p)e−µ±τ

]
, (22)

c±(τ) =
q

2
[
e−η±τ − e−µ±τ

]
, (23)

d±(τ) =
1
2
[
(1 ∓ p)e−η±τ + (1 ± p)e−µ±τ

]
, (24)

f̂±(t + τ) =
q

2

∫ τ

0

[
e−η±(τ−τ ′) − e−µ±(τ−τ ′)

]

× F̂±(t + τ ′)dτ ′, (25)

ĝ±(t + τ) =
1
2

∫ τ

0

[(1 ± p) e−η±(τ−τ ′) + (1 ∓ p)

× e−µ±(τ−τ ′)]Ê±(t + τ ′)dτ ′, (26)

ĥ±(t + τ) =
1
2

∫ τ

0

[(1 ∓ p) e−η±(τ−τ ′) + (1 ± p)

× e−µ±(τ−τ ′)]F̂±(t + τ ′)dτ ′, (27)

k̂±(t + τ) =
q

2

∫ τ

0

[
e−µ±(τ−τ ′) − e−η±(τ−τ ′)

]

× Ê±(t + τ ′)dτ ′, (28)

with η± = κ∓ε2
2 − 1

2

√
ε2
2 − 4ε2

1, µ± = κ∓ε2
2 + 1

2

√
ε2
2 − 4ε2

1,
p = ε2√

ε2
2−4ε2

1

, and q = 2ε1√
ε2
2−4ε2

1

. It perhaps worth men-

tioning that equations (20) and (21) are applied to cal-
culate various quantities of interest in the forthcoming
discussions. It is not difficult to observe that η± and µ±
take complex values if ε2 > 2ε1, that is, Â±(t) and B̂±(t)
rapidly oscillate at steady state in this case. One can also
see from equation (15) that for ε1 to be real, 2λε ≥ κε2.
Hence the case for which 2λε = κε2 is denoted as a thresh-
old condition.

3 Two-mode squeezing

In this section, the squeezing of the two-mode cavity radi-
ation that can be described by an annihilation operator,

ĉ =
1√
2

(
â + b̂

)
, (29)

is evaluated where â and b̂ are the boson operators corre-
sponding to the fundamental and second-harmonic modes.
In view of the usual boson commutation relations, one can
see that

[
ĉ, ĉ†

]
= 1 and

[
ĉ, ĉ

]
= 0. It is a well established

fact that the squeezing properties of the two-mode cavity
radiation can be studied using the quadrature operators
associated with ĉ,

ĉ+ = ĉ† + ĉ (30)

and
ĉ− = i

(
ĉ† − ĉ

)
, (31)
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which can also be expressed employing equations (9), (10),
(16) and (17) as

ĉ+ =
1√
2

(
2α + 2β + Â+ + B̂+

)
, (32)

ĉ− =
i√
2

(
Â− + B̂−

)
. (33)

3.1 Quadrature variances

Making use of the well-known definition of the variance
of an operator, the variances of the quadrature opera-
tors (32) and (33) are found to have the form

∆c2
± = ±1

2

[
〈Â2

±(t)〉 + 〈B̂2
±(t)〉 + 〈Â±(t)B̂±(t)〉

+ 〈B̂±(t)Â±(t)〉 − 〈Â±(t)〉2 − 〈B̂±(t)〉2

− 2〈B̂±(t)〉〈Â±(t)〉
]
. (34)

What remains to determine is the various expectation val-
ues in equation (34). To this effect, taking both the funda-
mental and second-harmonic modes to be initially in a vac-
uum state, employing the fact that the expectation value
of the noise force is zero and upon setting t = 0 and then
replacing τ by t in equations (20) and (21), it is obtained
at steady state that 〈Â±(t)〉ss = 0 and 〈B̂±(t)〉ss = 0.
Moreover, the other expectation values involved in equa-
tion (34) are given in Appendix B. Therefore, using equa-
tions (34), (B.5), (B.6), (B.7) and (B.8) one gets at steady
state

∆c2
± = e±2r

[
κ2(κ ∓ 2ε2) + κε2

2 + 4κε2
1 ∓ 2κε2ε1

(κ ∓ ε2) [κ(κ ∓ 2ε2) + 4ε2
1]

]
. (35)

It is not difficult to see for λ = 0 that

∆c2
± = e±2r (36)

and for λ �= 0

∆c2
± = e±2r

[
32λε − κ2(3 ± 4) − 4κ

√
2λε − κ2/2

2(2 ∓ 1)[8λε − κ2(1 ± 1)]

]
.

(37)
In a similar manner one can show for fundamental mode
that

∆a2
± = e±2r

⎧⎪⎨
⎪⎩

1 λ = 0,

16λε − κ2(2 ± 1)
(2 ∓ 1)[8λε − κ2(1 ± 1)]

otherwise.

(38)
As one can clearly see from Figure 1, the two-mode cav-
ity radiation exhibits a considerable squeezing even when
the oscillator is coupled to a vacuum reservoir. It is be-
lieved that the coherence in the external radiation before
the down conversion process is responsible for the cor-
relation between the fundamental and second-harmonic
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Fig. 1. Plots of the minus quadrature variance for the two-
mode cavity radiation (Eq. (37)) at steady state for κ = 0.5,
λ = 0.5 and different values of r.

modes that leads to squeezing. This, on the other hand,
indicates that even though the down conversion process
splits the external coherent radiation into two fundamen-
tal modes, it is unable to destroy the existing coherence.
This could also be perceived as if the phase sensitive down
conversion process characteristically allocates the aris-
ing quantum noise disproportionately to the quadrature
components of the superposition of the fundamental and
second-harmonic modes. It turns out that the two-mode
cavity radiation exhibits a significant degree of squeez-
ing for values of λε very close to κ2/4. On the basis of
equation (15) and ε2 = κ/2 this corresponds to the value
designated as a critical point. It is recalled that the mean
of the annihilation operator for the fundamental mode at
steady state is zero at the critical point. It is also observed
that, for a fixed value of the coupling constant (λ = 0.5),
the squeezing increases with the amplitude of the exter-
nal radiation for smaller values of λε. Moreover, it is found
that the degree of achievable squeezing for the two-mode
cavity radiation can reach up to 42% for a vacuum reser-
voir, κ = 0.5, λ = 0.5, and ε = 0.2. It is also directly
evident from Figure 1 and equation (37) that the squeez-
ing is significantly enhanced by the biased noise fluctua-
tions of the squeezed vacuum reservoir modes, although
the two reservoirs are assumed to be independent. In this
respect, further manipulation reveals that a squeezing of
87% occurs for r = 0.75, κ = 0.5, λ = 0.5, and ε = 0.2.

It is indicated in Figure 2 that the fundamental mode
of the driven degenerate parametric oscillator exhibits
squeezing in a different manner from the two-mode cavity
radiation, of course, with differing degree of squeezing. It
is found that 50% degree of squeezing occurs for r = 0,
λ = 0.5, κ = 0.5, and ε = 0.0625. The same result has
been reported, at critical point, by various authors using
different approaches [1–4]. As in the case of the two-mode
radiation, the presence of the squeezed vacuum reservoir
outside the cavity significantly improves the squeezing of
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Fig. 2. Plots of the minus quadrature variance for the funda-
mental mode (Eq. (38)) at steady state for κ = 0.5, λ = 0.5,
and different values of r.

the fundamental mode. It is found that 89% of squeez-
ing is achievable for r = 0.75, λ = 0.5, κ = 0.5, and
ε = 0.0625. Comparison of Figures 1 and 2 reveals that the
two-mode cavity radiation exhibits slightly smaller max-
imum squeezing than the fundamental mode. However,
one can readily see from equations (37) and (38) that, for
λ = 0, the squeezing in both cases reduces to that of ordi-
nary squeezed vacuum. That is, for r = 0, the squeezing
is not observed in the cavity, since there is no down con-
version of photons for λ = 0. One can, hence, deduce that
the cause for the squeezing in the fundamental mode and
two-mode cavity radiation is the correlation initiated in
the process of parametric down conversion.

3.2 Squeezing spectrum

The squeezing spectrum of the output of a two-mode ra-
diation can be expressed as

Sout
c± (ω) = 2Re

∫ ∞

0

eiωτ
〈
ĉout
± (t + τ), ĉout

± (t)
〉

ss
dτ, (39)

where

〈ĉout
± (t + τ), ĉout

± (t)〉 = 〈ĉout
± (t + τ)ĉout

± (t)〉
− 〈ĉout

± (t + τ)〉〈ĉout
± (t)〉. (40)

Now making use of the input-output relations introduced
by Gardiner and Collett [24],

âout(t) =
√

κâ(t) − 1√
κ

F̂a(t), (41)

b̂out(t) =
√

κb̂(t) − 1√
κ

F̂b(t), (42)

one finds

ĉout
+ (t) =

1√
2

[
2αout + 2βout +

√
κ(Â+ + B̂+)

− 1√
κ

(Ê+ + F̂+)
]
, (43)

ĉout
− (t) =

i√
2

[√
κ(Â− + B̂−) − 1√

κ
(Ê− + F̂−)

]
. (44)

In relation to the fact that the noise force at t + τ is
not correlated with the system variables at t and taking
equations (40), (43) and (44) into consideration, one can
readily see that

〈ĉout
± (t + τ), ĉout

± (t)〉

= ±1
2
〈
κ(A±(t + τ) + B±(t + τ))(A±(t) + B±(t))

+
1
κ

(E±(t + τ) + F±(t + τ))(E±(t) + F±(t))

− (A±(t + τ) + B±(t + τ))(E±(t) + F±(t)
〉
. (45)

Next in view of equations (20), (21), (22), (23) and (24),
one reaches, for ra = rb, at

〈Â±(t + τ)Â±(t)〉ss + 〈B̂±(t + τ)B̂±(t)〉ss

+ 〈Â±(t + τ)B̂±(t)〉ss + 〈B̂±(t + τ)Â±(t)〉ss

=
1
2
[
(X± + Y±)e−η±τ + (X± − Y±)eµ±τ

]
, (46)

where

X± =
1
2

[
〈Â2

±(t)〉ss + 〈B̂2
±(t)〉ss + 2〈Â±(t)B̂±(t)〉ss

]
,

(47)

Y± =
1
2

[
−(q ∓ p)〈Â2

±(t)〉ss + (q ∓ p〈B̂2
±(t)〉ss

]
. (48)

On the other hand, on account of the correlation func-
tions (5), (6), (7) and (8), one gets

〈Ê±(t + τ)Ê±(t)〉ss + 〈Ê±(t + τ)F̂±(t)〉ss

+ 〈F̂±(t + τ)Ê±(t)〉ss + 〈F̂±(t + τ)F̂±(t)〉ss

= 2κ(2M ± 2N ± 1)δ(τ). (49)

Furthermore, application of equations (20), (21), (22), (23)
and (24) leads to

〈Â±(t + τ)Ê±(t)〉 =
κ

2
(2M ± 2N ± 1)

× [
(1 ± p)e−η±τ + (1 ∓ p)e−µ±τ

]
, (50)
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〈Â±(t + τ)F̂±(t)〉 =
κ

2
(2M ± 2N ± 1)q

× [
e−η±τ − e−µ±τ

]
, (51)

〈B̂±(t + τ)F̂±(t)〉 =
κ

2
(2M ± 2N ± 1)

× [
(1 ∓ p)e−η±τ + (1 ± p)e−µ±τ

]
, (52)

〈B̂±(t + τ)Ê±(t)〉 = −κ

2
(2M ± 2N ± 1)q

× [
e−η±τ − e−µ±τ

]
. (53)

Hence using equations (45), (46), (49), (50), (51), (52)
and (53), one obtains

〈ĉout
± (t + τ), ĉout

± (t)〉 =
(
2M ± 2N ± 1

)
δ(τ)

+ κ
(
X± + Y± − (2M ± 2N ∓ 1)

)
e−η±τ

+ κ
(
X± − Y± − (2M ± 2N ± 1)

)
e−µ±τ , (54)

in which the squeezing spectrum of the two-mode radia-
tion takes the form

Sout
c± (ω) = 1 + 2N ± 2M ± κ

[
η±

η2± + ω2

(
X± + Y±

− (2M ± 2N ± 1)
)

+
µ±

µ2± + ω2

(
X± + Y±

− (2Mb ± 2Nb ± 1)
)]

. (55)

Following a similar approach, the squeezing spectrum of
the fundamental mode turns out to be

Sout
a± (ω) = 1 + 2Na ± 2Ma ± κ

[
η±

η2± + ω2

(〈Â2
±(t)〉ss + R±

− (2Ma ± 2Na ± 1)(1 ± p)
)

+
µ±

µ2± + ω2

× (〈Â2
±(t)〉ss − R± − (2Ma ± 2Na ± 1)(1 ∓ p)

)]
, (56)

where R± = ±p〈Â2
±(t)〉ss + q〈B̂±(t)Â±(t)〉ss. It is not dif-

ficult to see from equations (55) and (56) that the output
squeezing would be maximum for ω = 0, that is why I
choose ω = 0 in the following plots.

It is not difficult to see from Figure 3 that the output
of the two-mode radiation exhibits substantial degree of
squeezing for certain values of the amplitude of the driv-
ing radiation given that the coupling constant is indepen-
dent of the amplitude. It is found that a better squeezing
is achievable for κ = 0.5, λ = 0.5, and ε = 0.095. Like
the case inside the cavity, the maximum squeezing for
the output radiation occurs just above the critical point,
which agrees with the prediction of Drummond et al. [10]
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Fig. 3. Plots of the squeezing spectrum (Eq. (55)) for the two-
mode cavity radiation for κ = 0.5, ω = 0, λ = 0.5 and different
values of r.
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Fig. 4. Plots of the squeezing spectrum (Eq. (56)) for the
fundamental mode for κ = 0.5, ω = 0, λ = 0.5 and different
values of r.

for second-harmonic mode. It can also be seen from Fig-
ure 4 that there is quenching of the noise in the minus
quadrature component for the output radiation of the fun-
damental mode irrespective of the values of the squeeze
parameter. This quenching of the noise for the fundamen-
tal mode has been known since the work of Milburn and
Walls [1] and similar result has also recently reported [6].
Unfortunately, this prediction is clearly unrealistic, since
by virtue of the Heisenberg uncertainty principle this nec-
essarily requires an infinite noise fluctuations in the conju-
gate quadrature component. Moreover, it is observed that
the squeezing of the output radiation for both fundamen-
tal mode and two-mode radiation is significantly improved
by the squeezed vacuum reservoir. It is a well-known fact
that in determining the squeezing spectrum, the correla-
tion between the quadrature operators at different times
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are evaluated in the frequency domain. It is, therefore,
realized that the quenching of the overall noise in one of
the quadrature components of the fundamental mode and
the increment of the squeezing for two-mode radiation for
small amplitude of the driving radiation can be related to
this approach.

4 Conclusion

The squeezing properties of the two-mode radiation and
fundamental mode in a driven degenerate parametric
down conversion process when the cavity is coupled to
two independent squeezed vacuum reservoirs inside and
outside the cavity, are thoroughly analyzed. The resulting
nonlinear differential equations are solved applying a lin-
earization procedure in the semiclassical approximation.
It turns out that both the two-mode radiation and the
fundamental mode exhibit significant squeezing inside and
outside the cavity. Though the squeezing of the fundamen-
tal mode alone has attracted a great deal of interest in the
previous studies, it is found that the degree of squeezing
of the two-mode radiation is also as nearly considerable
as the fundamental mode. In addition to this, since the
squeezing in the two-mode radiation corresponds to the
strong correlation between the fundamental and second-
harmonic modes, it is found recently that an entangle-
ment and Einstein-Podolsky-Rosen type correlation be-
tween these radiations can exist [7]. It is not difficult to
realize that the squeezing can be maximized by properly
selecting the values of the damping and coupling constants
along with the amplitude of the driving radiation. How-
ever, the maximum achievable squeezing in the cavity ra-
diation in the absence of the squeezed vacuum reservoir is
limited to 42% and 50% for two-mode radiation and fun-
damental mode, respectively due to the leakage through
the mirror and amplification of the quantum noise. More-
over, it can easily be inferred from equations (37) and (38)
as well as Figures 1 and 2 that the squeezing of the fun-
damental mode and the two-mode radiation in the cavity
is exponentially enhanced by the squeezed input.

The degree of squeezing is found to decrease for funda-
mental mode and increase for two-mode radiation with the
amplitude of the driving radiation, if the coupling constant
is taken to be independent of the amplitude of the ex-
ternal radiation near critical point. The maximum cavity
squeezing for the fundamental mode occurs when ε1 = 0,
which corresponds to the situation in which the expecta-
tion value of the annihilation operator for the fundamen-
tal mode is zero at steady state. However, the maximum
squeezing for the two-mode radiation occurs slightly above
this critical point. Hence the maximum squeezing for the
output two-mode radiation occurs for the amplitude of the
driving radiation slightly greater than the critical value. It
can be deduced from what is discussed so far that the cor-
relation between the states of the down converted photons
is nearly the same as the correlation between the funda-
mental and second-harmonic modes. It can also observed
from the results obtained that though the down conver-
sion process splits the external coherent radiation, it is

unable to destroy the coherence that is responsible for the
correlation which leads to squeezing.

Appendix A: Proof of α = α∗ and β = β∗

In this appendix, I show that α = α∗ and β = β∗. To
this end, upon multiplying equations (11) and (12) by λ,
results

ε∗1ε2 − κ

2
ε1 = 0, (A.1)

ε2
1 + κε2 = 2λε, (A.2)

from which readily follows

ε1 =
2ε∗1ε2

κ
. (A.3)

In addition, multiplying equation (A.2) by ε∗1 and then
inserting the complex conjugate of equation (A.3) in the
resulting expression, it is possible to get

ε∗1ε
2
1 + 2ε1ε

∗
2ε2 − 2λεε∗1 = 0. (A.4)

Now subtracting equation (A.4) from its complex conju-
gate leads to

(ε∗1ε1 + 2ε∗2ε2 + 2λε)(ε1 − ε∗1) = 0, (A.5)

which holds true if ε1 = ε∗1. Therefore, it is not difficult to
see from equation (A.3) that ε2 = ε∗2. Hence on the basis
of these facts, it can be noted that α = α∗ and β = β∗,
since λ is taken to be positive constant.

Appendix B: Various correlations

In here various correlations are determined. To this end,
with the aid of equations (25) and (26) along with the fact
that the noise force at latter time is not correlated with
the system variables at the earlier times, one gets

〈Â2
±(t)〉 = −

(
1 ± 1

λ

) [
ε1b±(t) + ε2c±(t)

]〈Â±(t)〉

± [
b2
±(t) + c2

±(t)
]
+ 〈ĝ2

±(t)〉 + 〈f̂2
±(t)〉

+ 2〈ĝ±(t)f̂±(t)〉. (B.1)

Besides, on account of equations (5), (6), (7), (8), (18),
(19), (25) and (26), one finds

〈ĝ2
±(t)〉 =

κ(2Ma ± 2Na ± 1)
4

[
(1 ± p)2

2η±

(
1 − e−2η∓t

)

+
(1 ∓ p)2

2µ∓

(
1 − e−2µ±t

)

+
2(1 − p2)
η± + µ±

(
1 − e−(η±+µ±)t

)]
, (B.2)
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〈f̂2
±(t)〉 =

κ(2Mb ± 2Nb ± 1)
4

[
q2

2η±

(
1 − e−2η∓t

)

+
q2

2µ±

(
1 − e−2µ±t

)

− 2q2

η± + µ±

(
1 − e−(η±+µ±)t

)]
, (B.3)

〈ĝ±(t)f̂±(t)〉 = 0. (B.4)

Upon taking the squeeze parameter of the two reservoir
modes to be the same (ra = rb), it is not difficult to ar-
rive at

〈Â2
±(t)〉 = −

(
1 ± 1

λ

) [
ε1b±(t) + ε2c±(t)

]〈Â±(t)〉

± [
b2
±(t) + c2

±(t)
]
+

κ(2M ± 2N ± 1)
4

×
[
1 + p2 + q2 ± 2p

2η±

(
1 − e−2η±t

)

+
1 + p2 + q2 ∓ 2p

2µ±

(
1 − e−2µ±t

)

+
2(1 − p2 − q2)

η± + µ±

(
1 − e−(η±+µ±)t

)]
. (B.5)

Following a similar approach, it is possible to verify that

〈B̂2
±(t)〉 =

(
1 ± 1

λ

) [
ε1c±(t) − ε2d±(t)

]〈B̂±(t)〉

± [
b2
±(t) + c2

±(t)
]
+

κ(2M ± 2N ± 1)
4

×
[
1 + p2 + q2 ∓ 2p

2η±

(
1 − e−2η±t

)

+
1 + p2 + q2 ± 2p

2µ±

(
1 − e−2µ±t

)
]

+
2(1 − p2 − q2)

η± + µ±

(
1 − e−(η±+µ±)t

)]
, (B.6)

〈Â±(t)B̂±(t)〉 = −
(

1 ± 1
λ

) [
ε1b±(t) + ε2c±(t)

]〈B̂±(t)〉

+ c±(t)
[
d±(t) − b±(t)

] ∓ qp

4
(2M ± 2N ± 1)

×
[

1
η±

(
1 − e−2η±t

)
+

1
µ±

(
1 − e−2µ±t

)

− 2
(η± + µ±)

(
1 − e−(η±+µ±)t

)]
, (B.7)

〈B̂±(t)Â±(t)〉 =
(

1 ± 1
λ

) [
ε1c±(t) − ε2d±(t)

]〈Â±(t)〉

+ c±(t)
[
d±(t) − b±(t)

] ∓ qp

4
(2M ± 2N ± 1)

×
[

1
η±

(
1 − e−2η±t

)
+

1
µ±

(
1 − e−2µ±t

)

− 2
(η± + µ±)

(
1 − e−(η±+µ±)t

)]
. (B.8)
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